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Abstract 

Phase transitions which depend on grain size induce very interesting properties in materials 
such as zirconia or barium titanate. A new and rigorous thermodynamic treatment of this type of 
phase transition is proposed with consideration of the surface phenomena. An interpretation is 
given of the observed differences when the material - particularly BaTiO3 - under consideration 
is a fine grain powder or is a fine grain ceramic. 

Keywords: BaTiO3, ZrO2, fine grained ceramics, fine grained powders, phase transition 

Introduction 

Fine grained materials with a precise control of  the grain size distribution 
are increasingly in demand for specific purposes. 

Two well known examples can be given: 
- Zirconia, for increasing both the strength and toughness of  ceramics by in- 

creasing the resistance to crack propagation [ 1 ]. 
- Barium titanate, as the main component o f  the dielectric o f  type II multi- 

layer ceramic capacitors [2]. 
In both examples a phase transition is induced in the material, at room tem- 

perature, when the grain size is lower than a critical value. The special behav- 
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iour of these two very interesting materials originates in this particular phase 
transition. 

The aim of the paper is to review this behaviour and the interpretations 
which have been given. Then a new and full thermodynamic treatment of the 
problem is proposed. 

The grain size dependency of a material behaviour: cases of 
BaTiO3 and ZrO2 

B a r i u m  ti tanate 

The dielectric properties of BaTiO3 have long been known to be grain size 
dependent [3-6]. The most important property for the use of BaTiO3 as fine 
grained dielectric material has been evidenced by Arlt et al. [7] (Fig. 1); the di- 
electric constant of BaTiO3, at room temperature, exhibits a maximum value for 

a grain size in ceramics of -0.8 ~tm which is approximately six times the nor- 
mal value in large grain ceramics. 
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Fig. 1 The relative dielectric constant er (25 ~ as a function of the mean grain diameter ~ in 

BaTiO3 ceramics (Ref. [7]) 

Various explanations have been proposed for this behaviour [5, 7, 8]. None 
of them suggested a correlation with the variation of the BaTiO3 crystalline lat- 
tice with grain size which has also been known for a long time [9], but which 

has been experimentally better characterized recently [ 10-12]. The latest con- 

tribution [13] suggests that the er(RT) maximum of Fig. 1 might be associated 
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with the cubic-paraelectric to tetragonal-ferroelectric phase transition of 
BaTiO3 when the grain size increases progressively (Figs 2 and 3). Such an in- 
terpretation would be coherent with the classical interpretation of the drastic in- 

crease of er observed in coarse grain BaTiO3 in the temperature range 

120-130~ which is associated with the ferroelectric-paraelectric phase transi- 
tion of BaTiO3 

However, an important question remains: 
- in BaTiO3 ceramics, the maximum of the dielectric constant is observed, 

at room temperature, for grain size =0.8 pm. 

- while, in BaTiO3 powders, the phase change, at room temperature, is ob- 

served for grain size = 0.08 pin (Figs 2 and 3). 
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Fig. 2 The cell parameters of BaTiO3, at room temperature, as a function of  the mean grain di- 

ameter @ in powders �9 �9 �9 + + +[10] o o o[11 ] 

Without a full experimental study (crystallographic and dielectric) on the 
same samples is it possible to validate the above suggestion? 

Zirconia 

In contrast to the case of BaTiO3, the phenomenon which underlies the use 
of zirconia as a toughening agent in various ceramics has been well known for 
a long time [1] and [15-19]. 

Coarse-grained zirconia exhibits a phase transition between a high tempera- 
ture tetragonal form and a low temperature monoclinic form, in the 
950-1200~ temperature range [ 1]. The important variation in relative volume, 
+3 to +5%, which is associated with this tetragonal to monoclinic phase transi- 

J. Thermal AnaL, 41, 1994 



638 PERRIAT et al.: THERMODYNAMIC CONSIDERATIONS 

tion does not allow the use of pure coarse-grained zirconia ceramics. However, 
the transition temperature is very grain-size dependent [20] (Fig. 4); the grain- 
size influence is so large that the tetragonal high-temperature form is stable at 
room temperature when the grain size is lower than 10 nm [20]. The term 'me- 
tastable' was used originally [1, 15, 17]; we will see later, according to [15] and 
[20], that 'stable' has to be used in place of 'metastable'. 
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Fig. 3 The transition temperatures of  barium titanate as a function of  grain size in powders 
(+ + +[10] for To) (o o o mean values for orthorhombic/tetragonal transition [14]) 

The important volume change associated with the phase transition, on the 
one hand, and, on the other hand, the important shift of  the transition tempera- 
ture with varying grain sizes both underly the use of well-adapted grain-sized 
zirconia for increasing the resistance of a ceramic to crack propagation. The 
practical aspects and phenomena of transformation toughening have been re- 
viewed by Clausen et al. [18, 19]. 

Previous thermodynamic interpretation 

In the framework of classical thermodynamics, some theories have been 
proposed to explain the grain-size dependency of phase stability [21, 22] in 
finely divided materials. Such models have been applied to ZrO2 to describe the 
tetragonal/monoclinic transition [ 15, 16, 20] which is grain-size dependent. 

The authors describe a phase transition between two phases, ot and 9, using 
the following two classical relations: 
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- at equilibrium, at given T and P, the molar Gibbs free energy G of  the two 
phases are equal: 

- the expression for G is: 

800 

G~ = Gp (I) 

G = ~t~ + 7.A (2) 

where A is the surface area and n is the number of  moles in each grain; Ix ~ is the 

standard chemical potential (which depends only on temperature) and 7 is the 
surface tension (see below), 
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Fig. 4 The monoclinic/tetragonal transition of zirconia as a function of grain size [20] 

Both n and A depend on the grain size, consequently the free energy is a 
function of the grain diameter O. At a given temperature and a given pressure, 

it is then possible to draw a diagram of Ga(O) and Gp(O) for the two phases, 

(t and 13. The intersection of the plots defines the critical diameter, Oe, for the 
phase transition. The expression for the critical diameter has been calculated: 

Oc =_XV 7a-Tp (3) 
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V = Va  = Vf~ is the molar volume of the phases a and [~ and ~ is a numerical 
coefficient equal to 4 or 6 depending on the authors. 

This expression, obtained by balancing the surface and the volume contribu- 
tion to the free energy, is interesting because it explains the experimental phe- 
nomenon of a size-dependent phase transition. Particularly, the role of the 
quality of the surface, through the surface tension, is clearly shown by this re- 
lation. Consequently, the large difference observed between tI)c(s/a) = 0.08 pan 

in BaTiO3 powders (Fig. 2) and ~e(s/s)---0.8 pm in pure BaTiO3 ceramics 
(Fig. 1) is probably due to the difference between the values of the surface ten- 
sions of the tetragonal and of the cubic forms whether BaTiO3 is considered as 
a powder or as a ceramic. 

However, with respect to basic thermodynamics, the above theory is not 
completely satisfactory because both relation (1) and relation (2) are not correct 
in the present situation. 

Thermodynamic approach to the influence of the grain size upon 
the phase transition 

Genera l  cons idera t ions  

By applying only the two first principles of thermodynamics rigorously, a 
more satisfactory theory for the prediction of the phase stability in fine-grained 
materials is proposed. The main difference is the correct definition of the equi- 
librium condition when taking into account the surface phenomena: the usual 
minimization of the Gibbs free energy is no longer able to give the equilibrium 
equation. 

The behaviour of a grain, with radius R, which undergoes a phase transition 
from a to ~ is described here. It is clear that the phase transition temperature 
must depend on the grain size because the stability conditions are determined 
by the total energy (we will see below what kind of energy), which contains 
both volume and surface contributions which are size dependent. 

The following assumption will be made: the considered grain contains only 

one component, a or [~. This is justified by the fact that, when the two phases 
coexists in the same grain, there is an important elastic energy, associated with 
the stresses generated by the difference in density between the two phases. 
This assumption is rigorous when the Young's modulus of the grain is infinite. 

According to Gibbs (see for example [21]), the free energy, F, of a grain i s  
equal to: 

F(V, T, n, A) = Fv(V, T, n)+FA(T, A) 
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where FA is the excess energy due to the surface compared with the volume 
contribution, Fv, which would be F if  the surface did not exist, T is the tempera- 
ture, V the volume, A the surface area and n the number of moles inside the 
grain. 

In a similar way, the internal energy U(V, S, n, A), obtained by the classical 
Legendre transformation of  F, has the additive form: 

U(V, S, n, A) = F(V, T, n, A) + TS(V, T, n, A) = Uv(V, Sv, n) + UA(SA, A) 

where: Sv = [ ~  ,SA=[~-~ I ,S=IO~T T = Sv + SA, are the volume, 
V,n A V,n,A 

surface and total entropies, respectively. Uv = Fv + TSv and UA -" FA + TSA are 
the volume and surface internal energies. 

The two first principles of the thermodynamics can be now applied to the 
system composed of the grain under consideration. 

Application of the first principle 

For any transformation (reversible or not), the following relation can be 
written: 

dU = -PintdV + TdS + ~tdn + ydA = -PextdV + fiQ 

where Pint is the pressure inside the grain, Pext the external pressure, Ix the 

chemical potential of  the considered phase and y a parameter equal by defini- 

tion to: T = --0-f~ (a physical interpretation of y will be given latter). 
V,S ,n  

The first relation: dU = -PintdV + TdS + Ixdn + ~dA expresses the fact that 
U(V,S,n,A) is an exact differential (i.e. a state function), whereas the second re- 
lation: dU=-PCxtdV+ ~SQ corresponds to the well-known relation: dU= 
8W~xt + ~iQ with ~W~xt = -PextdV. 

Application of the second principle 

The following relation expresses this second principle: 

TdS = ~Q + TdSi 

where dSi is the irreversible entropy production. 
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Fundamental equation and calculation of the free energy 

The two principles of thermodynamics lead immediately to the fundamental 
equation for the free energy: 

dF = -PintdV - S d T +  lxdn + TdA = -PextdV- SdT - T d S i  

Then, considering the homogeneity of the system: F(XV, T, Xn, XA) = LF(V, 
T, n, A), the Euler theorem gives the following expression for the free energy: 

F(V, T, n, A) = -PintV+ ~ln + ~A 

with Fv(V, T, A) = -PintV + ~n and FA(T, A) = yA. 

Interpretation o f t  

3U . It is also equal to ~ OFA due to 
B y d e f i n i t i ~  ~ -  v,s,n V'~'n = ~A-- T 

the properties of the Legendre transformation. 

Since FA(T, A) = 7A, the parameter 7 must be considered as the free energy 
per unit surface. That is only true because FA has been considered as depending 
on T and A only. In other words, the possible effects of  a chemical contribution 
to the surface free-energy have been neglected. 

The two parameters: Pint and Pext 

It is of  considerable importance to note the difference between Pint and P, xt. 

The parameter Pin, which is equal to --0h--~Ul I , is a state parameter defined 

! 

I S,n ,A  

from state functions: it corresponds then to the local pressure inside the grain. 
On the other hand, Pext is the external applied pressure. 

In classical thermodynamics (without surface considerations), Pint and P,xt 
are the same at equilibrium (TdS~ = 0). However, when we consider surface 
phenomena, these two quantifies are different. It is easy to obtain from the fun- 
damental free-energy equation that the equilibrium (Td& = 0) of  a grain which 
does not exchange matter with the universe (dn = 0), satisfies the following re- 
lation: 

dA 
Pint = Pext + ~-~ ~' 
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Due to the spherical geometry of  the grain, the following well-known 
Laplace relation can be obtained: 

Pin t  = Pex t  + -~ (4) 

This expression, which could also be derived from the principle of  virtual 
work, means that the internal pressure must equilibrate both the external pres- 
sure and the surface tension. 

What  is the energy which describes  the system ? 

In thermodynamics, it is usual to determine the energy (generally obtained 
by an adequate Legendre transformation from the internal energy) which is 
minimal at equilibrium. This is the energy which takes into account the interac- 
tions with the external universe and then correctly describes the system. 

For the usual systems (without surface phenomena) that undergo changes at 
P~xt and T constant, the correct energy is the Gibbs free-energy: Gv(P~nt, T, n) = 
Fv + Pi~tV. In this standard situation: 

dGv = V d P i n t -  SdT + lldn = (Pint - P e x t ) d V - S d T  + V d P i n t -  TdSi 

The equilibrium condition is: dGv = 0 (P~,t = Pext  because of  the mechanical 
equilibrium, TdS~ = 0 since there is reversibility, dT = 0 and dP~,t = dP~xt = 0 be- 
cause T and Pext are constant. Note that Tis here the temperature of  the system, 
which is equal to the external temperature at equilibrium, and that it is this latter 
quantity which is in fact imposed). 

Now, when there are surface phenomena, the Gibbs free-energy is not the 
right quantity, as one can see by writing the differential dG of  G(P~nb T, n, A): 

dG = VdPint - S d T  + ~tdn + 'fdA = (Pint - Pext)dV- SdT + VdPint - TdSi 

At equilibrium: dV and dPint are both different from 0, so that G is not at a mini- 
mum. 

In fact the energy to consider is G* = F + P, xtV whose differential is equal 
to: 

dG* = VdPext - S d T  + ~tdn + 7dA - (Pint - Pext)dV = VdPext - S d T -  TdSi 

At equilibrium, TdSi = 0, and as dT = 0 and dPext = 0 " d G *  = 0. 
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The energy which describes the system is then G* and not G as it is generally 
considered. The reason being that G* and not G is at a minimum at equilibrium. 

Interpretation of G* as the chemical~mechanical free energy 

By definition: G*=F+Pext V so that at equilibrium 

G*=G_ 2~YR V (5) 

G* is then the sum of the usual Gibbs free-energy which is a chemical energy 
and of  an additional mechanical term which corresponds to the elastic energy 
due to the surface tension. For this reason, we call G* the chemical/mechanical 
free energy. 

A small difficulty is that the energy G* cannot be obtained from a Legendre 
transformation of  the classical energies, such as U or F, so that a large number 
o f  the classical thermodynamic relations which are direct consequences of  the 
properties of  the Legendre transformations are not available here. In particular, 
it is not possible to decide which is the correct set of  independent variables, 
necessary to express easily the energy G'. 

Calculation of G* 

It is necessary to calculate the chemical potential g(Pint, T)= 
Gv(Pint, T, n = 1). Using the Maxwell relation: 

= Pint., T n 

where V is the partial molar volume of the constituent of  the grain, and assum- 
ing moreover that the material is incompressible (V does not depend on Pint), 
the following relation is obtained: 

g(Pint, T) = g~ + Pint V 

Then G* = F + P i n t V =  G + (eex t  - Pint)V; 

. 3 ~ ' V  
and G* =g~ +7A +PextV=n(g~ ) 
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The quantity g* = B ~ + ~ is the chemical/mechanical potential which gen- 

eralizes the usual chemical potential without surface phenomena.  It differs 
f rom the generalized potential proposed by TurnbuU which was equal to 

2vv 
~o + R [21]. 

Study of phase stability 

At T and Pext constant, there is a phase transition between the two phases tx 

and [~ when Ga* = GI3*. The transition condition is then: 

l.t~x + ~ V ~  + PextVc~ = BI~+ 3~--~ + PextVl3 

This equality is satisfied for a critical radius Re which depends on the sur- 
face free-energies, on the chemical potentials and on the external pressure: 

R c  = - 3 ( to + - + e.x,V ) (6) 

When the difference between the density of the two phases is very small 
(Vc~ -- VI3 = V) the critical diameter tI)e = 2Re becomes: 

�9 c = - 6 V(Yt~ - ~/t~) 
ll~t - B~ (7) 

Compar ing  relations (3) and (7), the numerical coefficient ~ has now te be 
equal to 6. 

D i s c u s s i o n :  a p p l i c a t i o n  t o  B a T i O 3  

For BaTiO3, which undergoes a cubic/tetragonal transformation, Fig. 5 
shows the respective variations of the surface energy, ~,, and of the chemical po- 

tential, ~t. As usual, the chemical potentials are assumed to be linearly depen- 
dent on temperature and the surface free energy is assumed to be only slightly 
dependent  on the temperature. Considering only the volume energy, the phase 
would be tetragonal below Tc(oO) and cubic above Tc(oo). This is observed for 
very large grains when the surface contribution can be neglected. On the con- 
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trary, for very small grains (where the volume energy can be neglected), the 
phase is cubic whatever the temperature. Note that it is necessary to assume 
~/~ < ~/t to explain the experimental results. 

One can then easily understand the grain-size dependency of  the phase tran- 
sition temperature. Figure 6 gives the chemical/mechanical free energy per 
mole, g*, of  both phases, BaTiO3 tetragonal and cubic, as a function of  tempera- 
ture for two different grain sizes, g* is the sum of the volume and surface ener- 
gies per mole. The figure clearly shows a phase transition temperature 
increasing with grain size. 

~ :,~.~.~- g*!R) 

, , "  g t(~176 

ImI,..- 

Tc(R) TC ( o o )  Temperature 

Fig. 6 Grain-size dependency of the phase transition tempera.ture of BaTiO3. The chemi- 
cal/mechanical free-energy per mole of both phases, g : tetragonal (t) and cubic (c) is 
given as a function of temperature. R is the radius of the grain under consideration: 
when R = 0-, only the volume properties have to be considered 

This result is consistent with the direct calculation of  the variation of  the 
critical radius Rc with temperature: 

where ~ and ~ are the molar entropies of  both phases, cubic and tetragonal. As 

7~ < Tt (see above) and ~ < ~ (the phase with the greater entropy is stable at 

high temperature), dTe~RcJ- O, so that as Rc increases Tc increases. 
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The difference between the grain size corresponding to the drastic increase 
of  ~ for BaTiO3 ceramics (~(s/8) = 0.8 ttm) and the critical grain size relative 

to the phase transition for BaTiO3 powders ( ~ 0 / a )  = 0.08 ~tm) can be under- 

stood using the above thermodynamic treatment. There would always be an ex- 
act correspondence between the maximum permittivity and the phase 
transition, but the critical grain size, which depends on the surface free energies 
of  the two phases, cubic and tetragonal, is different for ceramics and for pow- 
ders: for ceramics, the surface under consideration is a solid/solid interface, 
whereas it is a solid/air interface in the case of powders. When the stresses rela- 
tive to the polycrystalline nature of ceramic materials are neglected, relation (7) 
predicts the ratio of the surface free energies between ceramics (q(~ -)'t)8/~ and 

powders (To - Vt)~/a as a function of the critical grain sizes ~c(~ / ~) and tI)c(s / a): 

('/c - " / 0 8 / 8  ~ ( s  / 8) m _ l O  

C o n c l u s i o n  

The grain-size dependency of  a phase transition is a general phenomenon; 
the example of  Fe203 has been given more recently [23], and the expression 
'size driven phase transition' has been used [24]. 

The difference in behaviour of BaTiO3 powders and BaTiO3 ceramics with 
respect to grain size has been explained by surface considerations. This inter- 
pretation, which has been validated qualitatively, would have to be confirmed 
by both a full experimental study (crystallographic and dielectric) and direct 
measurements of  the surface free-energies for ceramics and for powders. 

Such surface considerations have already been used to explain the grain-size 
dependency of some phase transitions. However, the usual thermodynamic 
models have some small errors which have been avoided by using rigorous ba- 
sic thermodynamics. The main idea is that, as a consequence of the difference 
between the external and the internal pressure in the grains, the Gibbs free en- 
ergy is no longer able to describe the equilibrium condition. 
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Zusammenfassung--Korngrrl3enabh~ingige Phasenumwandlungen verursachen bci Materia- 
lien wie Zirkonerde oder Bariumtitanat sehr interessante Eigenschaften. Unter Beriicksichtigung 
der Oberfl~ichenerscheinungen wurde ein neue und griJndliche thermodynamische Behandlung 
dieses Typs von Phasenumwandlungen vorgeschlagen. Es wird eine Errrterung der beobachteten 
Differenzen in Abh~ingigkeit davon angestellt, ab das untersuchte Material - bier BaTiO3 - ein 
feingek6rntes Pulver oder eine feingek6rnte Keramik ist. 
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